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1. INTRODUCTION

A sequence p,, ps, ..., py Of nonnegative real numbers is said to be a
weight sequence if

N

Y pe=1.

k=1
Suppose we are given a sequence x,, X,, .., Xy of numbers in the unit
interval [0, 1] and a weight sequence p,, ps, ..., px- We recall that the
discrepancy D, of the sequence x,, x,, .., Xy With respect to the weight
sequence p,, p,, .., py is defined as

Dy= sup |g(x)l,

O<xx1

where
gx)=x— Y p.

1<k<N
Xp< X

In [1] we introduced the following notion of ¢-discrepancy.
Let @: [0, 1] = R be a function satisfying the following three conditions:

(i) ¢ is nondecreasing on [0, 1],
(i) lim, o, @(x)=0,
(iii) ¢@(x)>0 for x>0.
The the number

D= ollg(x)i) d

is said to be the g-discrepancy of the sequence x,, x,, ..., x y wWith respect to
the weight sequence p,, p,, ..., Pn-
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Obviously,
D' < o(Dy). (1)
In [2] we have proved that if the numbers x,, x,, .., x, are ordered
according to their magnitude, i.e.,
0<x, €x,€ - <xy< 1, (2)
then

1

D= g(h(x)) dx, (3)

0
where the function /4 is defined on [0, 1] by
h(x)=|x—x;] if xela,_y,a;), 1<k<N. (4)

Here and throughout the numbers a,, a,, ..., ay are given by
k
a,=0, ay=>y p, (k=1,2,.,N).
i=1
(We also assume that [a, b)=[a,b]if b=1.)

We shall consider in this paper quadrature formulae of the type

[[F0)dx= T T A 1000+ RO, 5)

0

where the function f'is r-times differentiable on [0, 1] and coefficients A4,
are given by

(ak_xk)j+l_(ak—l “Xk)jH
Akj= T
Jj+ 1)

For the history of quadrature formulae of this type see [3]. Note that in
the case r =0, the formula (5) can be written in the form

1 N
J, F)dx= 3 pif(x) + RS, (6)
k=1

Let us recall that a continuous function w defined on [0, o0} is called a
modulus of continuity if w(0)=0 and

O0<w(y)—ox)<w(y—x) for 0<x<y.
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For a nonnegative integer r and a modulus of continuity w, we denote by
W™H? the set of all functions f defined on [0, 1] for which the inequality

) =) < ollx = yl)
holds for all x and y belonging to [0, 1]. We shall write in what follows
W'H (C) instead of W"H if w(t)= Ct*, where C>0 and O0<a < 1.

In this paper, we investigate the error of the quadrature formulae of the
type (5) in the classes W”H®. An exact (in a certain sense) estimate for the
integration error is obtained by means of the ¢-discrepancy of the sequence
X1, X3, ..y X With respect to the weight sequence p,, p,, ..., Py-

2. STATEMENT OF THE MAIN RESULT

We shall suppose in what follows that the condition (2) holds.

THEOREM 1. Let r be a nonnegative integer and  be a modulus of
continuity. Then

sup [RP(NI<DLY, (7)

fe WH®

where the function ¢ is given by

w(x) if r=0,
o(x)= ,
X ! r—1 :
(r_——l*)-ij‘o (l—t) (U(UC)d[ lf r>1
Moreover, the inequality (7) changes into equality if either
w(t)=Ct (9)

(where C is an absolute constant) or r is an even integer and the numbers x,
and p,. are related by

Xt Xp g

a === (k=1,2, ..., N—1). (10)

Taking into account (1), we immediately obtain from Theorem 1 the
following

CoOROLLARY 1. Let r be a nonnegative integer and w be a modulus of
continuity. Then

sup |RE(S) <@(Dy), (11)

fe WHY

where the function ¢ is given by (8).
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In the case r=0 and p,=p,= --- = py=1/N, the estimate (11) was
proved by Niederreiter [4]. For arbitrary weights (also in the case r=0)
this estimates was obtained by the author [5] and rediscovered by
Niederreiter and Tichy [6]. In the case r>1 it was proved by the author
and Kirov [7].

It is easy to check that if (9) holds then (8) can be written in the form

er+l

(P(X)=m-

(12)

Therefore, from Theorem 1 we get the following

COROLLARY 2. Let r be a nonnegative integer. Then

. 333(0 IR = TES

[ tgtor dx.
0

This estimate in the case r =0 was proved by Sobol’ [8]. In the case
r=1 it was proved by the author [3]. We would like to note that some
other results of [3] are consequences of Theorem 1 as well.

Remark. 1t is not difficult to see that in the case r =0, the requirement
(2) is unnecessary (in Theorem 1 and both corollaries).

5. APPROXIMATION OF FUNCTIONS AND ¢-DISCREPANCY

Suppose that a function f is r-times differentiable on [0,1]. Then
for every xe[0,1], determine an integer k (0<k<N) such that
xela, ., a,) and define LY)(f; x) by

4 f(j)(xk)
o N

LS x)= (x —x,).

Approximation properties of the linear operators LY’ (r=0,1,2,..) in the
L” metric were studied by several authors (see [3]). In this section, we
continue these investigations but in more general metrics.

Let @ be a nondecreasing function on [0, c0). Denote for simplicity,

1
IFlo= [ @(F(x)) dx,
4]
where F is a function, defined on [0, 1]. (For example, one can assume

640/52/3-4
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that ||-| 4 is a norm of a functional space L? [9].) In the next theorem, we
obtain an exact (in a certain sense) upper estimate for the approximation
error | f — LY(f)| 4 in the classes W H®,

THEOREM 2. Let r be a nonnegative integer and © be a modulus of
continuity. Then

sup [If = LY(f)lo < DY, (13)

fewnw

where Y(x)= ®(p(x)) and the function ¢ is given by (8). Moreover, the
inequality (13) changes into equality if either (9) or (10) holds.

Proof. Suppose fe WH®. First, we consider the case r> 1. It can be
proved [7] that for each x€ [a,_,, a,), 1 k<N, we have

JS(x)= LS x)

_(X—xk)

C(r=1)

[[A=t = O+ = x) 0 —fP@)1d. (14)

Therefore,

If = LYo

=3 [* @100 - L(fs ) dx

k=1 "ak-1

SR

k=1"ak-1

—f(x0)] dt’)dx, (15)

[ a0t e-x0

From this we deduce

If =LY o
<X j (lx );k)” (1= oo(lx —x,] t)dt>dx
k=1"4-1 .
=-[0 ((:1(—)(1” (1 - 1)~ 'w(th(x)) dt) dx

= [ dtoth(x)) dx= [ ¥(hx) dx, (16)
o] 0
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where the function £ is defined on [0, 1] by (4). Applying (3), we obtain
from (16) that

If = LY(Nle < DY (17)

Now, let us consider the case r=0. Obviously,
N o gy
If —L9UNNe= Y [ @(1f(x) = f(x)]) dx. (18)
k=1 "9-1
Consequently,

If - L“”(f)llqb\Zf O(o(|x = x,)) dx

=1 Va1

= [ P(hx)) dr= [ ihto)) v

From this and (3) we again obtain (17) and so (13) is proved. Now we
shall prove the second part of the theorem.

Let (9) hold. Then the function ¢ is given by (12). Define the function /
on [0,1] by

7O(x)=Cx. (19)
Evidently,
feWH (C)=WH"

From (15), (18), and (3), we deduce

L= 3 [ o (B2 i

P (r+1)

-[ (’Zf’; 1),) = || Plothx)) dx

= [ W(hx)) dx=DY).
1]

Now, let (10) hold. Define the function f on [0, 1] by
JO(x) = o(h(x)). (20)
Obviously,
fe WH®.
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From (15), (18), and (3), we deduce

17— L9Dlla= | B(o(h) dx

1
= [ w(h(x)) dx =D
4]
Thus, Theorem 2 is proved.
Setting ®(x)=x (0 < p< o0) in Theorem 2, we get the following

COROLLARY 3. Suppose 0 < p < oo. Let r be a nonnegative integer and
be a modulus of continuity. Then

1 1/p
sup1f =LY <( [ ot dx) 1)

fe WH®

where the function ¢ is given by (8) and

1 1p
171,=( [ 1R ax)

Moreover, the inequality (21) changes into equality if either (9} or (10)
holds.

Passing to the limit as p — o in Corollary 3, we get the following

COROLLARY 4. Let r be a nonnegative integer and ® be a modulus of
continuity. Then

sup If =L c<@(Dy)s (22)

fe WHY
where the function ¢ is given by (8) and
[Flc= sup |F(x)|.

0<xx1

Moreover, the inequality (22) changes into equality if either (9) or (10)
holds.

The first part of this corollary was proved in [7].

4. PROOF OF THEOREM 1

It is easy to check that

RO = L= L9300 d (23)
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Therefore,
[ROQON <=L .- (24)

Now the estimate (7) follows from (24) and Corollary 3 (p=1). We begin
the proof of the second part of the theorem.
Obviously,

RO(N=Y [ 1) - fx)]dx. (25)

k=1 "%-1

For the case r > 1, it follows from (23) and (14) that
1 N

R%)(f)=(r—1)' Z J’“k (x—x,)

Tk=1"ak-1

x (Jl (=0 Tt (x— %) ) — )] dz) dx. (26)

Let (9) hold and r be an odd integer. From (25), (26), and (3), we obtain

C
(r+ 1)

RO = [ hx e = plh(x) = DI,

where the function f is defined on [0, 1] by (19).
Now let (9) hold and r be an even integer. Define the function % on

[0, 1] by
F(x)=C,+Clx—x,| if xe[a, ;,a;), | <k<N,
where the numbers C,, C,, ..., C are given by

Co=0, Cor1=CetCla,—x,| —Clay— x, 4 1], k=1,2,..,N.

Then define the function f on [0, 1] By
JO(x) = w(h(x)).
In [3] we have proved that
he WH (C).
Hence,

fe WH,(C)=WH®,
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From (25), (26), and (3), we obtain

C N ra
R%)(])=(T+—1—)!k2 J (x — xp ) |x — x| dx

—1 Y-

C 1
TEEI] [y ey = rax= [ oty ds =i

Finally, let (10) hold and r be an even integer. Then from (25), (26), and
(3), we get

R{(7) = oh(x)) dx=Dip),

where the function f is defined on [0, 1] by (20). Thus, Theorem 1 is
proved.
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